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We calculate asymptotic values of the first two moments of a planar walk 
in which the step lengths depend on the direction of motion. The model is 
suggested by experiments on the locomotion of biological cells. Internally 
induced persistence due to nonuniform turn angle distributions is also 
accounted for. 
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1. I N T R O D U C T I O N  

There has been considerable interest recently in the planar motion of  bio- 
logical cells and organisms. Specific applications include the inhibition of  
macrophage movement by a soluble factor produced by dividing lympho- 
cyter 1.2> and the directed response of  leukocytes to gradients of  attractive 
substances released by damaged red blood cells (3> or degraded bacteria. (4~ 

I t  would be of some interest to derive quantitative parameters that 
characterize the motion of  such cells. There have been several experimental 
studies of  cellular motion that use the notions of  random walk theory to 
discuss the observed phenomena. These suggest that such diverse cell types 
as fibroblasts, (5> granulocytes/6> and flagellated bacteria (7~ move in approxi- 
mately straight line paths separated by discrete changes in direction. 
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A recent investigation by Berg and Brown (7) has provided precise data 
on such random motion for the case of  bacteria, and the effects of  chemo- 
attractants have been characterized as well. The distribution of times between 
turns is found by these investigators to be negative exponential. Further, 
the external chemotactic field has been found to influence the mean run time, 
apparently without influencing the remaining parameters of  the random walk, 
e.g., the probability of  turning through a given angle does not seem to depend 
on cell orientation with respect to the chemotactic field. 

In this paper we calculate the asymptotic average and variance covariance 
matrix of  the displacement in a random walk model suggested by Berg and 
Brown's experiments. This model is a generalization of that proposed by 
Pearson (s) and solved by Kluyver (~) allowing for a biasing mechanism appro- 
priate to the bacteria in Berg and Brown's experiments. Patlak (1~ has given 
an exhaustive analysis of  biased random walks in the context of  problems of 
biological motion. The assumptions underlying his work are close to our own, 
but he treats the description of cell motion by an approximate Fokker -  
Planck equation derived for the case of  weak fields. We, on the other hand, 
treat the dynamics of the process more exactly and can infer the general 
asymptotic probability distribution for displacements from the central limit 
theorem. 

2. A N A L Y S I S  

Let us consider a two-dimensional random walk of a cell in which the 
direction of cell movement is measured with respect to a fixed external axis 
which we choose to be the x axis. At time t = 0 the cell is placed at the origin 
with a uniformly distributed orientation from zero to 2~r. We make the 
following assumptions concerning the subsequent motion of the cell. 

1. The motion consists of  straight line paths separated by discrete turns. 
The motion along any path has a constant random speed independent of cell 
orientation. The distribution of speeds is the same for allpaths,  and the mean 
and second moment  of the speed are denoted by ~ and v 2, respectively. 

2. At the end of a path the cell turns through a random angle O, chosen 
in accordance with a probability density p(O). This function is assumed to 
have the property that the only integer value of n for which 

f f  p(O)e ~n~ = (1) dO 1 

is n = 0. 2 

It is not difficult to show that if p(0) consists of any continuous components, i.e., does 
not consist solely of delta functions, the above condition is satisfied. 
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3. Let c~ be the direction of  a given path with respect to a fixed (x) axis 
The probability density for the duration of  a single path is h(~) e x p [ -  Z(~)t]. 
Thus Z(~) is the parameter that measures the bias introduced by the chemo- 
tactic substance. Symmetry will be assumed for this function, so that A(c 0 = 
a(-~). 

In addition to the preceding assumptions, we introduce the following 
notation: 

1 S cosnOdO i f  cosnOdO 
~ = y ~  _~ A(O----- 7 '  y~ = ~  _~ A~(O) 

J/ p~ = p(O)e '~~ dO = c~ + is~ (2) 

where 

c~ = p(O) cos nO dO, s~ = p(O) sin nO dO (3) 
- -  , ~  Yg  

For the random walk defined above we calculate asymptotic values of 
the first two moments of the position of  the center of  the cell at time t, 
r(t) = (x(t), y(t)).  A history of the random walk at time t can be given in 
terms of  (i) the path durations (in time) rl ,  r2 ..... zn(t~, where n(t) is the 
number of  segments making up a total path at time t, (ii) the initial angle ~o, 
and (iii) the turn angles 01, 02, ..., 0~o_1. We proceed, in the following, by 
first fixing n(t), averaging over the cell velocities v, and then averaging over 
all possible histories. Next the Laplace transform with respect to t is taken, 
following which the sum over all n(t) is performed. Finally, the angular 
averages are calculated. An application of  a Tauberian theorem for Laplace 
transforms (11) then allows us to infer the asymptotic values of the averages. 

Let us first define the angles 

~1 =~o, ~ = ~ 0 +  01 + 02 + - . .+  0~_1 (4) 

to be the angles between the nth path segment and the x axis. Then the value 
of x,(t), which is the x displacement at time t conditional on n - 1 complete 
and one incomplete steps having been made, is 

x~(t) = ~ v ~  cos ~ (5) 

where the r 's are nonnegative random variables satisfying 

~ 7~ = t (6) 

Thus, the result of averaging with respect to v, and with respect to the ~-'s 
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subject to this last constraint ,  can be writ ten 

E,.~{x.(t)} 

jo J? jo = A1A2""An- zv d'rl dr2"'" dr~ 

0 ex ( 
x 3(~-1 + ~'z + " "  + r~ - t) (7) 

where the delta funct ion is inserted to satisfy Eq. (6), and we have denoted 
A(~) by At. Since the nth step is incomplete  at  t ime t with probabi l i ty  one, 
A~ must  be omi t ted  as a mult iplying factor  in the integrand, a 

I f  we introduce the no ta t ion  

Fr = A,/(ar + s), G r = (cos  ~r)/(,~r -t- s)  (8) 

then the Laplace  t r ans form o f  Eq. (7) can be expressed as 

fo ~176 (-st)E,,v{x,(t)} dt exp 

f: fo = A1A2...A~_~ d'r1"" dr~ 

x r, cos ~i exp (~i + s)~', 

= (g/s)F1Fz...F._I(1 - F.)(GI + G2 +... + G.) (9) 

since the ~" integrat ions can be pe r fo rmed  explicitly, and since 

1 
A.+-------)- s A . + s  = (1 - F . )  (10) 

The  next step in the calculation is to pe r fo rm the  summat ion  over  n, leading 
to 

fo ~ e-StE.,v{x.(t)} dt 
n = l  

= (~/s)[G~ + F~G~ + V~F2G3 + F~F2F~G~ + ' " l  = (~/s)J(s, O) (11) 

where J(s, O) is the bracketed  sum. 
We next turn to the angular  averaging. Suppose that  a function H(O) o f  

3 That is, since the probability density for the duration of a path is le -at, it follows that 
the probability that a path lasts longer than t is 

ao 
ft Ae-atd~- = e-at 
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the angles % 01, 02 .... ,0,_1 is given. Then by our specification of the 
random walk the angular average of H(O) is 

Eo{H(O)} = (1/2~ 1 2"  ,-1 
g 

x H(O) dO~...dO, (12) 

Hence we can express the Laplace transform of the average of x(t) as 

e-~'(x(t)) dt = s Eo{J(s, 0)} = s J_~ ~ U(% s) (13) 

where, if we suppress the s arguments in each of the functions, U@) is given 
by 

u(~) = a(~) + F(~) a(~ + O)p(O) dO 

f-/f + F(~) F(q) + 0~)6(9 + 01 + 02)p(O~)p(02)dO~ dO2 

+ F(~o) F(~o + OOF(q) + O~ + 02)G(~o + 01 + 02 + Oa) 
J~ 

x p(O1)p(O2)p(Oa) dO 1 dO 2 dO3 +... (14) 

This last equation is a consequence of Eqs. (11)-(13). It is easy to verify from 
this last expression that U(go) is the solution to the integral equation 

f2 u(~, s) = ~(% s) + F(~, s) U(~ + O, s)p(O) dO (15) 

An equivalent set of equations can be obtained by expanding all functions in 
a Fourier series, 

U(%s)=  ~ u~(s)e ~ ,  G(%s)=  2 

e(% s) = ~ f~(s)e i"~ (16) 

g,(s)e ~n~ 

n =  - o o  

The right-hand side of Eq. (13) is just guo(s)/s in terms of these coefficients. 
From Eq. (15) we see that the Fourier coefficients satisfy 

u~(~) = g~(~) + ~ ur(~)prA-~(~) (17) 

for all n. This set of equations is exact and forms the starting point for the 
asymptotic analysis. 

The behavior of (x( t ) )  for large t is related to the small s behavior of 
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Uo(S). Specifically, we will calculate terms in Uo(S) that either vary as 1/s or 
are constant, as s goes to zero. These terms allow us to infer an expansion of 
the form ( x ( t ) )  ~ ~(at + b) at sufficiently large t. 

The definitions in Eqs. (8) and (16) imply that for small Is], f , ( s )  and 
g,(s) can be expanded as 

A ( s )  ~ 8.,o - s/3. + s ~ .  . . . .  

g . ( s )  ~ �89 + / 3 . - 1 )  - �89 + 7 . - 1 )  + . . .  (18) 

where 6.,0 is a Kronecker delta and/3, and 7~ are defined in Eq. (2). Hence for 
small Is[ Eq. (17) can be rewritten as 

(1 - p.)u.(s)  = �89 +/3 . -1)  - �89 + 9'.-1) +"" 

-- ~ Ur(S)pr[S/3n-r -- S27n-r + " ' ]  (19) 
T 

Let us next substitute the expansion 

u.(s)  = (as~s) + b + . . .  (20) 

into this last equation. (It is easily shown that if higher powers of 1/s are 
included in the expansion, their coefficients will be identically equal to zero; 
this conclusion is also obvious from probabilistic considerations.) When the 
terms proportional to 1/s are collected it is found that a.(1 - p,~)/s = 0. But 
this allows us to conclude that 

a.  = 0, n O 0  (21) 

by the assumption that p .  # 1 except for n = 0. If we set s = 0 in Eq. (19) 
and collect terms independent of s on the right-hand side, we find that 

ao =/31//3o (22) 

Similarly, to calculate the {b.}, we collect terms independent of s, finding 

b. = [�89 + /3 . -1)  - (/31/3.//3o)1/(1 - p . ) ,  n # 0 (23) 

Then, setting n = 0 and collecting the coefficients of  s, we find that 

bo /317o 71 2r__~1 [ ~ o ~ ] R e {  , r  ] (24) 
- /30 /30 /30 /3r �89 +1 + /3r-  1) - \ 1 - pr] 

The combination of Eqs. (13), (20), (22), and (24) allows us to write, as a 
final result, the asymptotic relation 

( x ( t ) )  ~ ~((/31//3o)t + bo) (25) 

The term proportional to t depends on h(0) but not on the turning angle 
distribution. The second term includes the turning angle density p(O). 

A similar, but slightly more elaborate calculation leads to the asymptotic 
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value of elements of  the covariance matrix. The analog of Eq. (11) is found 
to be 

fo e-~tE,,~{x~2(t)} dt = (1/s)F~F2...F~_~(1 - F~)[2v ~ G~ 2 
g = l  

+ 2g 2 a~6; (26) 
~ = 1  = 

so that 

e-StE.,,{x~2(t)} dt = (2/s)v2[G~ 2 + F1G22 + F1F2G32 +...]  
r ~ = l  

+ (2g2/s)[FIGI(G2 + F2G3 + F2F3G, +.. .)  

+ F~F2G2(G3 + F3G~ + F3F4G~ +.. .)  

+ FzF2F3G3(G~ + FaG~ + F, FsG6 + ...)] 

(27) 

The contribution from the first set of bracketed terms to g~x(t) is calculated 
in exactly the same way as (x ( t ) ) .  Details will be omitted, but the resulting 
term is v2t(7o + 72) plus a constant term that we have not calculated. The 
average of the second set of bracketed terms can be written 

J: (1/2~r) d~oR(% s) (28) 

where R(% s) is the solution to the integral equation 

R(% s) = c(% s)[V(% s) - 6(~,  s)] 

+ F(% s) R(cp + O, s)p(O) dO (29) 
y~ 

Again confining ourselves to the case of s approaching zero, we can Fourier- 
analyze R(% s), finding that 

J: (1/2,0 d~R(% s) ~ (2/s2)(fi~/fo) 2 + (ro/floS) +...  (30) 

where 

ro = �89 ~ (fi, + l + fi,_ ~)[b, - �89 + ~ + f t , - l )  - (fl~/fl0)fi,] 
R = - - c o  

the {b~} being given in Eqs. (23) and (24). 
If  we introduce a function 

R =  - c o  

bne~nq ' 

(31) 

(32) 
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then g~x(t) = ((x2(t)) - (x( t ))  2) goes asymptotically as 

~2 (~ B(9) ~ d~o]t (33) ~x(t) ~ [~o ~ (r0+ r2)+ ~/3o~_~ 

plus a constant term. Here we havedenoted (~  - ~2) by %2 so that there are 
two types of contributions, a term due to fluctuations in speed (i.e., this term 
vanishes if the cells travel at uniform speed), and the remainder combining 
the effects of fluctuations in path lengths and turn angles. 

The other nonzero element of the covariance matrix, r is calculated 
in the same way, and we omit details of the computation. If  we define 

B1(99) = ~ (/3~-i -/3n+1) Im[e'~/(1 - p~)] (34) 

then we find that o~(t) has the asymptotic form 

I~o 2 7r/3---~ ~2 f~  , , t~J s in~ ] %2u(t) "~ (Yo - Y2) + B~(~o) ~-ST-XT~ d99 t (35) 

plus a constant term. The remaining element, r is identically equal to 
zero as a consequence of symmetry. 

An example for which detailed results can be given rather easily is 
specified by 

1/a(c 0 = T(1 + 2, cos c~) (36) 

The parameter e is a measure of asymmetry that biases the random walk to 
move preferably in the positive x direction when E > 0. The parameter T 
has the dimensions of time and [El < 1/2. For this case 

/3~ = T[~.,o + . (~+~,o + ~.-~,o)] 

r .  = T~[(1 + 2.~)~.,o + 2.(~+~,o + a._~,o) + .~(~.+~,o + a._~,o)] 
(37) 

With this set of parameters we see that 

(1 - c2)  
(x(t))  ~ ~ t  + gET(2~ 2 -- 1)( 1 el) 2 + $12 

(1 --2cl) 

+ (1 -- c2) 2 + s2 2 

E 2 

(1 - c~  u s~ ~ L 
(1 -2c2) ~l~Tt 

(1 --c~ T s2 J5 
(38) 
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In the limit of long time we expect that the distribution of  position in the 
random walks just described will tend to a Gaussian form. This has not been 
proved in detail, but at any point in time the cell position is a Markovian 
random variable, and the asymptotic Gaussian property can probably be 
proved starting from a form of the central limit theorem for weakly dependent 
random variables. A generalization of the present calculations which allows 
random speeds to depend on an external angle is easily made. On the other 
hand, the generalization of these results to three-dimensional random walks 
appears to pose much more difficult computational problems. 
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